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Abstract. The large uncertainty surrounding the future effects of sea-level rise and other aspects of

climate change on tidal marsh ecosystems exacerbates the difficulty in planning effective conservation and

restoration actions. We addressed these difficulties in the context of large-scale wetland restoration

activities underway in the San Francisco Estuary (Suisun, San Pablo and San Francisco Bays). We used a

boosted regression tree approach to project the future distribution and abundance of five marsh bird

species (through 2110) in response to changes in habitat availability and suitability as a result of projected

sea-level rise, salinity, and sediment availability in the Estuary. To bracket the uncertainty, we considered

four future scenarios based on two sediment availability scenarios (high or low), which varied regionally,

and two rates of sea-level rise (0.52 or 1.65 m/100 yr). We evaluated three approaches for using model

results to inform the selection of potential restoration projects: (1) Use current conditions only to prioritize

restoration. (2) Use a single future scenario (among the four referred to above) in combination with current

conditions to select priority restoration projects. (3) Combine current conditions with all four future

scenarios, while incorporating uncertainty among future scenarios into the selection of restoration projects.

We found that simply using current conditions resulted in the poorest performing restoration projects

selected in terms of providing habitat for tidal marsh birds in light of possible future scenarios. The most

robust method for selecting restoration projects, the ‘‘combined’’ strategy, used projections from all future

scenarios with a discounting of areas with high levels of variability among future scenarios. We show that

uncertainty about future conditions can be incorporated in site prioritization algorithms and should

motivate the selection of adaptation measures that are robust to uncertain future conditions. These results

and data have been made available via an interactive decision support tool at www.prbo.org/sfbayslr.
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INTRODUCTION

The prospect of accelerating global change
requires resource managers and decision makers
to adjust their management strategies and to
develop adaptation plans that anticipate novel
environmental conditions (Williams and Jackson
2007). Ideally, adaptation plans for future climate
changes would incorporate both models of future
environmental conditions and knowledge and/or
models of how ecosystems will respond. Unfor-
tunately, models of future climate conditions are
often highly uncertain (Meehl et al. 2007) and we
generally lack precise knowledge of how ecosys-
tems or species will respond to the changes the
models project (Walther 2010). Effective planning
for climate change must contend with substantial
uncertainty (Polasky et al. 2011).

Uncertainty in future environmental condi-
tions can be partitioned into several broad
classes. For example, although our knowledge
of the global climate systems has grown consid-
erably, crucial gaps in our understanding of key
processes in the atmospheric cycle still exist
(Meehl et al. 2007), resulting in variation in
projections from various general circulation
models (GCMs). Further, because of a lack of
understanding concerning the dynamics of gla-
ciers and ice sheets, the sea-level rise projections
reported in the most recent Intergovernmental
Panel on Climate Change (IPCC) report did not
include these dynamics (Meehl et al. 2007). Other
sources of uncertainty include effects from
potential policy decisions or assumptions of
CO2 emissions reductions, which can have large
impacts on ecosystem processes. For instance,
water policy such as the amount and timing of
water released from dams or the removal or
construction of dams can have large impacts on
downstream ecosystems. Scientific advances can
reduce the uncertainty for questions which fall
within the first broad class but will not help for
questions in the second. Therefore managers
cannot count on science alone to reduce uncer-
tainties in projections of future conditions and
they must develop strategies for planning amidst
this uncertainty.

The degree of uncertainty in future projections
dictates which approaches should be used when
incorporating models into management deci-
sions. When our knowledge of a system is

relatively high, we may be able to provide
probabilistic estimates of the uncertainty in our
future projections, in which case formal decision
theory is an appropriate approach for informing
management decisions (McDonald-Madden et al.
2010). However, when uncertainties in key model
parameters are too high to infer probabilities,
scenario planning (Peterson et al. 2003) or robust
decision making (Dessai and Hulme 2007) can
serve as important alternative approaches to use
available science to guide decision making
(Polasky et al. 2011).

Tidal marsh habitat is one of the most
threatened ecosystems globally and at regional
scales (Greenberg et al. 2006) mainly due to the
conversion of habitat for urbanization or other
land uses (Takekawa et al. 2006). This narrow
intertidal vegetation zone supports an array of
plant and animal species, and in, North America,
several endemic species or subspecies that have
evolved specialized adaptations to this harsh
saline environment (Greenberg et al. 2006). Many
of these tidal marsh endemic taxa are listed as
threatened, endangered or of special concern
primarily because of habitat loss.

Recently, global efforts have been initiated to
restore tidal marsh habitat in part to support the
recovery of threatened and endangered species
but also to promote the array of ecosystem
services tidal marshes provide such as flood
protection (Gedan et al. 2010), carbon sequestra-
tion (Hopkinson et al. 2012), and recreation
(Zedler and Leach 1998). However, the sustain-
ability of ongoing and planned restoration
projects may be in jeopardy because tidal marsh
habitat is particularly vulnerable to sea-level rise
(Craft et al. 2009, Stralberg et al. 2011) and other
climate-change effects such as changes in salinity
(Callaway et al. 2007, Parker et al. 2011).

One of the critical decisions faced by managers
in the San Francisco Estuary pertains to where to
restore tidal marsh ecosystems and whether tidal
marsh restoration efforts will likely succeed with
future climate change. Here we focus on the
prioritization of potential marsh restoration
projects and ask the question: which marshes
are more likely to succeed in providing high
quality wildlife habitat into the future?

Unfortunately our understanding of tidal
marsh response to climate change over the next
century is still largely incomplete (Fagherazzi et
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al. 2012). In the San Francisco Estuary, where
over 14,000 hectares of wetlands have been
restored or are planned for restoration, recent
modeling studies found that the ability of tidal
marsh habitat to keep pace with sea-level rise is
highly dependent upon the assumed rate of sea-
level rise and availability of suspended sediment
(‘‘sediment’’ used throughout for convenience)
(Stralberg et al. 2011). For example, models
project the amount of ‘‘mid-marsh habitat’’
(defined as �0.2 m to þ0.1 m relative to mean
higher high water [MHHW]) in 2110 to either
increase by almost 250%, given high sediment
supply, and low sea-level rise or decrease by
almost 91%, given low sediment supply and high
rates of sea-level rise (Stralberg et al. 2011). This
uncertainty is partly due to our limited under-
standing of how sea level will respond to rising
global temperatures (Vermeer and Rahmstorf
2009, Price et al. 2011) and also to our lack of
understanding of both current and future sedi-
ment dynamics within the estuary (Cloern et al.
2011). Some of this uncertainty will decrease as
our knowledge of the global climate system and
estuarine ecosystems improves, but some of the
uncertainty is also due to highly unpredictable
public policy decisions and other human behav-
iors. Therefore, decisions about the prioritization
of tidal marsh restoration projects will need to be
made with a highly uncertain estimate of
whether these projects will continue to provide
the ecosystem functions they were designed to
sustain.

Here we explore alternative methods for
prioritizing tidal restoration projects given high
uncertainty in projections of future environmen-
tal conditions (marsh elevation and salinity) in
the San Francisco Estuary. We use projections of
abundance and distribution of five tidal marsh
bird species as a metric of ecological function to
prioritize potential restoration projects and eval-
uate how well the projects perform under future
scenarios designed to represent our uncertainty
in future conditions. Although there are many
sources of uncertainty that could influence tidal
marsh restoration management decisions (e.g.,
upstream watershed management, land use
decisions) our scenarios only account for the
uncertainty in several specific aspects of future
environmental conditions (i.e., with regard to
marsh elevation and salinity). We are not

attempting to account for all sources of uncer-
tainty in our exercise, but the scenarios we have
chosen represent plausible extreme differences in
projections of tidal marsh ecosystem response to
climate change. Therefore, these scenarios pro-
vide a good test of our approach for prioritizing
restoration decisions based on models with high
uncertainty.

Tidal marsh bird species were chosen as
indicators of tidal marsh ecosystem function
because they are higher trophic-level organisms
and as such, can serve as indicators of tidal
marsh structure and function. More pragmatical-
ly, quantitative data were lacking at sufficient
scales for the modeling of other tidal marsh-
dependent taxa (Carrigan and Villard 2002).
Furthermore, increasing bird abundance and
bird species diversity is a major goal for most
of the restoration projects we examined here. The
five chosen bird species depend on tidal marsh
habitat during all stages of their life cycles but
occupy different niches such that these species
combined can be related to multiple components
of the tidal marsh ecosystem (Spautz et al. 2006,
Nordby et al. 2009, Stralberg et al. 2010).

We use results from four scenarios (each
combination of high and low sediment and high
and low sea-level rise) to simulate habitat
suitability for five species of tidal marsh birds
as measures of restoration project success. We
hypothesize that, given the high uncertainty in
our knowledge of future conditions, a systematic
prioritization of tidal marsh restoration projects
that considers results from current conditions
and all four future scenarios will result in the
selection of restoration projects that is most
robust with respect to the high uncertainty in
future environmental conditions. We compare
this method to prioritization approaches that
select restoration priorities on the basis of a single
future scenario combined with current conditions
or only current conditions.

METHODS

Study area
Our modeling efforts spanned the saline and

brackish portions of the San Francisco Estuary
(Suisun, San Pablo, and San Francisco Bays,
hereafter ‘‘Estuary’’) and focused on portions
that are either currently at an elevation that
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supports tidal marsh habitat (�0.5 m to þ0.3 m
relative to MHHW), or projected to achieve such
elevations in the future under sea-level rise (Fig.
1). Modeling was restricted exclusively to tidal
marsh habitat as we did not have equivalent
marsh bird survey data from mudflats or upland
areas. Study sites were initially established to
monitor bird populations using locations that
were visited several times each year over
multiple years (Spautz et al. 2006). These sites
(i.e., marshes) were located in tidal marsh habitat
throughout the region and were selected to
sample the range of environmental conditions
that occur throughout the Estuary in this habitat
type.

Study species
We modeled the distribution and abundance of

Black Rail (Laterallus jamaicensis), Clapper Rail
(Rallus longirostris), Common Yellowthroat (Geo-
thlypis trichas), Marsh Wren (Cistothorus palustris)
and Song Sparrow (Melospiza melodia). In the San
Francisco Estuary, four of these species are
represented by one or more subspecies that are
entirely or mainly confined to tidal marsh
habitats in this region: California Black Rail (L.
j. coturniculus), which is a California Threatened
species, California Clapper Rail (R. l. obsoletus),
which is a Federally Endangered species, Salt-
marsh Common Yellowthroat (G. t. sinuosa), a
California Species of Special Concern, and three
tidal marsh subspecies of Song Sparrow, all of
which are California Species of Special Concern:
Alameda (M. m. pusillula), Samuel’s (also referred
to as ‘‘San Pablo’’; M. m. samuelis), and Suisun
(M. m. maxillaris) (Shuford and Gardali 2008).

Survey methods
Surveys for Clapper Rails required specialized

survey methods (Liu et al. 2009); these data were
available from 2005 to 2010. All six years of
survey data were used in the bird modeling for
this species to provide a long-term average for
the ‘‘current’’ (2010) distribution. An average of 9
survey stations were established at 212 marsh
sites. Survey stations were located on the edge
and/or interior of each marsh site and were
surveyed at least 3, and up to 5 times per year
between 15 January and 15 April. Biologists
recorded the estimated distance and bearing to
individual Clapper Rails detected by sight or

sound for 10 minutes at each survey station.
Generally, detections that overlapped or were
within 5 degrees were considered to be the same
bird(s) previously detected. If no Clapper Rails
were detected within 200 m of a survey station
after the first 2 passive survey visits, call-
broadcast surveys were used on the 3rd visit to
elicit a response. The call-broadcast surveys
consisted of an initial 5 minutes of passive
listening, and if no Clapper Rails were detected,
then 1 minute of call-broadcast followed by 4
minutes of passive listening. Detections were
plotted on a map and summarized by the
observer to determine unique individuals.

We used passive point-count surveys of five
minute duration (Ralph et al.1993) for surveys for
Black Rail, Common Yellowthroat, Marsh Wren
and Song Sparrow (Spautz et al. 2006, Stralberg
et al. 2010). For these species, we used the most
recent 10 years of survey data, i.e., 2000 to 2009,
to provide a long-term average reflecting ‘‘cur-
rent’’ (2010) distribution. Counts were conducted
within the breeding season (mid-March to end of
May) and excluded juveniles. Only observations
within 50 m radius of the point-count center were
used. All point count survey stations were
located approximately 200 m apart. Additional
details on the analysis of bird survey observa-
tions can be found in Appendix A, Spautz et al.
(2006) and Stralberg et al. (2010).

Physical parameters
Physical variables were initially selected for

inclusion in the models based on previous work
modeling tidal marsh habitat characteristics in
relation to bird abundance in tidal marshes
(Stralberg et al. 2010) and other published studies
(Watson and Byrne 2009) (Table 1). All variables
were calculated at a 50-m by 50-m grid-cell
resolution. For Clapper Rail, the variables were
summarized using a 100-m radius from the
center of each grid cell, for all other species we
used a 50-m radius, areas which approximate the
home ranges of the five tidal marsh species
(Goals Project 2000). We were limited to variables
for which data were available throughout the
Estuary and that would also be available for
projecting future scenarios. Elevation and tidal
range variables and data sources are described in
Stralberg et al. (2011). Channel metrics were
based on a map of current tidal channels derived
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Fig. 1. San Francisco Estuary tidal marsh regions (Suisun, San Pablo, and San Francisco Bays) and avian survey

sites used in the analysis. The footprints of 97 proposed or in progress restoration sites are also displayed.
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from current elevation and slope characteristics
from a digital elevation model with a 5-m by 5-m
spatial resolution. Distance values were calculat-
ed using Euclidean distance in ArcGIS 9.3.1
(ESRI 2009) and based on layers found in San
Francisco Bay Area EcoAtlas (http://www.sfei.
org/ecoatlas).

Estimates of current mean summer (June, July,
August) and spring (March, April, May) salinity
were calculated based on a spatial interpolation
of salinity observations throughout the bay
(Appendix B). Observations at point locations
were averaged across time and then spatially
interpolated to a 50 m 3 50 m grid using local
polynomial interpolation in ArcGIS 9.3.1.

The effect of salinity on bird distributions was
hypothesized to be most extreme during the late
spring and summer seasons, when run-off from
precipitation is minimal. Therefore, only these
two seasons were included in our models. Spring
and summer salinity were highly correlated
(Pearson’s r ¼ 0.91); thus we only included one
of the seasons in our final models. We initially
considered both salinity variables; whichever
salinity variable had greater relative influence
in initial exploratory models was retained for
final models. Additionally, bird models included
bay region and observation year modeled as
factors. Clapper Rail models included a factor for
whether a tape playback was used during the
survey. We assume that the physical variables we
use for predicting bird abundance, particularly
salinity and elevation, serve as proxies for the
vegetation composition and structure that tidal

marsh birds depend upon.
Some variables were static across future

scenarios; locations of levees and urban areas
and the distance to levee or urban areas variables
remained constant. Because we have no projec-
tions for how tidal channels will change in the
future and because at least one published model
indicated no change in tidal range in the future
(Cayan et al. 2008) we made the simplifying
assumption that distance to nearest channel,
channel percent and tidal range would not
change in the future.

Distribution and abundance models
Tidal marsh birds were modeled using boosted

regression trees (BRT) (Elith et al. 2008). BRTs
have been shown to be less prone to over-fitting
to training data sets than standard classification
and regression trees and have better predictive
performance than other statistical algorithms
(Elith and Graham 2009). They also have the
benefit of implicitly incorporating interactions
and non-linear responses into predictions.

For each species, we tested all possible
combinations of models with tree complexities
(number of splits in each tree) of 1 to 5 and
learning rates (how quickly the model finds a
solution) of 0.01, 0.005, and 0.001. The number of
trees was chosen based on an optimization
routine described in Elith et al. (2008). The
optimal combination of parameters was selected
based on the predictive deviance using a 10 fold
cross-validation of the models and the final
number of trees fit. We chose models with

Table 1. Units of measurement for physical parameters included in models. Also indicated (static) is whether the

parameter was allowed to vary by time interval in future projections.

Variable Units Static variable

Mean spring salinity Practical salinity units (PSU) No
Mean summer salinity Practical salinity units (PSU) No
Mean marsh elevation (relative to MHHW) m No
Most frequent marsh elevation (relative to MHHW) m No
Standard deviation of marsh elevation (relative to MHHW) m No
Tidal range (difference between MHHW and MLLW) m Yes
High-marsh (0.2 to 0.3 m ) proportion Proportion No
Mid-marsh (�0.2 to 0.1 m) proportion Proportion No
Low-marsh (�0.5 to �0.3 m) proportion Proportion No
Mean slope Percent rise No
Percent of area that is channels Percent Yes
Distance to edge of bay m Yes
Distance to nearest channel m Yes
Distance to nearest levee m Yes
Distance to nearest urban area m Yes
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moderate learning rates that resulted in the
lowest deviance with fewest trees. However,
where differences among models in predictive
deviance (based on cross-validation) were negli-
gible, the final model was selected using the
parameters that resulted in the simplest models
(fewer trees, smaller tree complexity, larger
learning rate) since simpler models have been
shown to generally have superior predictive
performance (Elith et al. 2010).

We used a two-step process to predict abun-
dance for each species: first we modeled pres-
ence/absence and then we modeled abundance
conditional on the species’ predicted presence.
We modeled presence/absence for each species in
the surveyed area using BRTs with a binomial
link function fit to the entire dataset (i.e., all
marsh sites). We then used a threshold value to
assign either 0 (species absent) or 1 (species
present) to each cell if its estimated probability of
occurrence (from the binomial BRT) was below
or above the threshold value, respectively. Except
for Clapper Rail, the threshold used was the
overall species prevalence in the survey dataset
after correcting for probability of detection. The
prevalence was estimated by fitting an imperfect-
detection occupancy model to the survey data
which considered variation in probability of
detection throughout the landscape (Appendix
B; Liu et al. 2005). There is uncertainty around
the estimate of probability of detection and
therefore around the threshold (prevalence), but
we did not quantify this.

The number of detections per survey per ha
was used as a measure of relative abundance
(Nur et al. 1999). For the second phase, we used
another BRT model for each bird species to
estimate abundance from the physical variables’
values. However, the abundance BRT models
were constructed from datasets filtered to ex-
clude marsh sites where the species was never
found (no individual detected at that site across
all years). Thus, the abundance models are
conditional on the species’ being present. We
then used the predicted presence/absence layer
as a mask, such that abundance was predicted
only for cells for which presence was also
predicted (i.e., above the threshold value). For
Clapper Rail, we set the presence threshold at a
relatively low value of 0.1, to ensure that
predicted abundance (presence probability 3

abundance conditional on presence) equaled
observed abundance, consistent with recommen-
dations by Freeman and Moisen (2008) for
species with low observed prevalence. The total
abundance of a species across the Estuary was
estimated by summing the predicted abundance
across all tidal marsh cells in the San Francisco
Estuary.

All statistical analyses and BRT models were
conducted using the R statistical software (R
Development Core Team 2012), package ‘‘gbm’’
(Ridgeway 2010) with modifications by Elith et
al. (2008), package ‘‘pscl’’ (Zeileis 2008), and
package ‘‘unmarked’’ (Fiske and Chandler 2011).

Current (2010) abundance predictions were
based on the same 50-m grid layers used to
develop the models, constrained to potentially
vegetated tidal marsh regions of the bay (i.e.,
between �0.5 m and 0.3 m with respect to
MHHW). We assessed the accuracy of our
probability of occurrence models using a cross-
validated area under the receiver operating
characteristic curve (AUC, Hanley and Mcneil
1982). AUC assesses how well predictions dis-
criminate observed presences from observed
absences. AUC values can vary between 0 and
1, with 1 being perfect discrimination between
presence and absence and values of 0.5 indicating
discrimination no better than random. We
evaluated the predictive accuracy of our abun-
dance models using the Pearson correlation
coefficient (COR), between predicted and ob-
served abundance (Potts and Elith 2006).

Future scenarios
Subregion-specific SLR and sediment scenarios

were taken from Stralberg et al. (2011) (Appendix
C). We used two nonlinear sea-level rise scenar-
ios based on functions proposed by the National
Research Council to extrapolate intermediate
(0.52 m) and high (1.65 m) scenarios of sea-level
rise by 2110 (‘‘NRC-I’’ and ‘‘NRC-III’’, respective-
ly). We used only the ‘‘low’’ scenario of organic
accumulation rates (1–2 mm/yr, depending on
the subregion) from Stralberg et al. (2011), given
that marsh accretion rates were found to be
relatively insensitive to organic accumulation
across the range of SLR and sediment scenarios
evaluated (Stralberg et al. 2011).

For estimating the future salinity of the Estuary
we used 100-year (2000–2099) salinity projections
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for 50 bay segments and delta outflow values
obtained from the Computational Assessments
of Scenarios of Change for the Delta Ecosystem
project (Cloern et al. 2011) which consisted of
daily salinity projections based on the Geophys-
ical Fluid Dynamics Laboratory (GFDL) general
circulation model for two carbon dioxide emis-
sions scenarios: B1 and A2. The B1 scenario
assumes that global greenhouse-gas emissions
will level off throughout the next century while
the A2 scenario assumes accelerating increases of
greenhouse-gases throughout this century and
beyond. Because the sea-level rise assumptions
used in the salinity simulations were based on
IPCC projections (Meehl et al. 2007), they did not
match our more recent estimates from the NRC.
Thus we had to adjust the salinity projections to
match the NRC sea-level rise projections (NRC-I
and NRC-III). To accomplish this, separate
regression models were developed for each bay
segment and for each emission scenario (B1 and
A2), in order to separate the effects of sea-level
rise (SLR) and delta outflows (a function of
precipitation) on daily salinity values. Linear
regression models were specified as:

Salinity ¼ b1 3 SLRþ b2 3 Season

þ b3 3 net delta outflow:

Seasons were defined as consecutive three month
periods, with spring defined as March, April, and
May and summer defined as June, July, and
August. Daily values were averaged over seasons
and 20-year time periods to match our marsh
elevation projections. The difference between
current and future projections was added to the
observed current salinity layer to obtain future
salinity projections that retain the spatial patterns
of current salinity in the Estuary.

Future projections of bird abundance were
restricted to areas in which vegetated marsh was
expected to occur (Stralberg et al. 2011), i.e.,
above �0.5 m with respect to MHHW. For
mapping, we included areas that are currently
protected from tidal flows by levees. However, in
our population summaries, we only included
potential marsh areas not currently affected by
levees. Separate maps were made for each
species and scenario in 20 year increments from
2010 to 2110.

Landscape prioritization
We used the conservation planning software

Zonation 3.0 (Moilanen 2007) to prioritize all
current and future potential tidal marsh habitat
in the San Francisco Estuary. The Zonation
algorithm creates a hierarchical ranking of the
landscape by iteratively removing pixels from
the landscape based on their biological value to
all species under consideration. Here we used the
‘‘core area Zonation’’ removal rule for which at
each iteration the algorithm minimizes the loss of
for the species-equivalent with the smallest
proportion of its distribution remaining thereby
retaining core areas for all ‘‘species’’ (Moilanen
2007, Ballard et al. 2012). Maps of projected bird
densities for each time period and scenario were
included as separate ‘‘species’’ in the analysis
(Thomson et al. 2009).

Restoration project prioritization
We used six different Zonation strategies for

ranking restoration projects (Table 2). We first
obtained a Zonation solution in which we only
included the current projections of the five
species to simulate a conservation prioritization
that did not account for climate change (‘‘Head in
the sand’’).We also obtained one Zonation
solution that corresponded to a single sediment
and sea-level rise (SLR) scenario combination (‘‘I
feel lucky’’), for a total of four such strategies.
Each of the four ‘‘I feel lucky’’ strategies only
relied on maps of projected tidal marsh bird
abundance for the current conditions and the
respective sediment and SLR scenario (five time
periods 2030, 2050, 2070, 2090, 2110) in the
Zonation solution.

Finally, we obtained a Zonation solution which
was based on maps for the current distributions
as well as the maps for all future scenarios
(‘‘Combined’’). In this final solution we used the
standard deviation of the predictions for each
species for each cell across the four future
scenarios for each time period to discount
predictions and account for across-scenario un-
certainty in future predictions (Moilanen et al.
2006). Zonation accounts for uncertainty by
subtracting the standard deviation from the
predicted abundance value at each pixel, so that
predictions with higher degree of certainty
(lower standard deviation) have greater weight
in the prioritization than those cells that are less
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certain, all else being equal.
We estimated the relative value of 97 planned

and ongoing tidal marsh restoration projects
throughout the Estuary provided by the San
Francisco Bay Joint Venture (SFBJV 2012) using
Zonation. We summed the Zonation rankings
within each restoration polygon and selected the
polygons with the highest summed values. This
process necessarily will tend to weight larger
restoration projects higher but we felt this was
appropriate as larger projects can potentially
provide more habitat. We tested alternative
methods in which the projects were evaluated
by standardizing the Zonation results by area
and by ranking the projects using replacement
costs (Cabeza and Moilanen 2006) but the results
were not qualitatively different than those
obtained using the methods above, so we only
present results based on summed rankings. We
evaluated each restoration selection strategy by
calculating the number of tidal marsh birds that
could be supported by the habitat provided in
the top 25% of restoration projects in each of the
four future scenarios. Thus we expected that a
selection strategy based on a single restoration
scenario (‘‘I feel lucky’’) would be optimal when
that scenario was used for evaluation (i.e., when
the correct future scenario is used for restoration
planning) but we hypothesized that a single
future scenario prioritization strategy would be
sub-optimal when a different scenario was used
for model projection (i.e., when an incorrect
future scenario is used for restoration planning).

We tested for differences among selection
strategies after accounting for effects of year (as
linear trend) and future scenario (as a factor), and
including species as a random effect, because
generally we are not interested in estimating the

effect of each species. We hypothesized that the
‘‘Combined’’ strategy would result in a selection
of top restoration projects that would be com-
paratively robust to uncertainty regarding future
scenarios. Therefore, we evaluated the signifi-
cance of the contrast of each of five strategies vs.
the ‘‘Combined’’ strategy in the linear mixed
model by inspecting the posterior distribution of
the parameter estimate for each contrast, profiled
from 5000 Markov chain Monte Carlo samples.
Support for our hypothesis would be evidenced
in 95% credible intervals of the parameter
estimates with regard to selection strategy that
consisted entirely of negative values and thus
excluded 0, indicating higher gains in bird
numbers under the ‘‘Combined’’ strategy com-
pared to each of the other strategies. Linear
mixed model analyses were conducted using the
lme4 package (Bates et al. 2012) in R.

RESULTS

Birds: current distributions and abundance
Year, tidal range and salinity were consistently

influential in the models for the five tidal marsh
species (Table 3). Distance to bay, distance to
nearest channels, and mean elevation were also
found to be highly influential in the models for
some species (Table 3). The accuracy of bird
distributional models varied considerably among
the five species studied. Models for the two rail
species had the lowest predictive accuracy of the
five species modeled while the more common
songbird species were modeled with higher
accuracy (Table 3). Projections for all species
modeled and tidal marsh habitat under current
and future scenarios are available for viewing
online and are available to download (www.
prbo.org/sfbayslr).

Table 2. The six different strategies used to prioritize restoration projects for providing the best habitat for tidal

marsh birds. The prioritization strategy lists which scenarios were included as inputs into the Zonation

analysis to rank the landscape.

Prioritization strategy Years included Strategy name

Current tidal marsh bird abundance 2010 Head in the sand
Current and high sediment/high SLR 2010, 2030, 2050, 2070, 2090, 2110 I feel lucky a
Current and high sediment/low SLR 2010, 2030, 2050, 2070, 2090, 2110 I feel lucky b
Current and low sediment/high SLR 2010, 2030, 2050, 2070, 2090, 2110 I feel lucky c
Current and low sediment/low SLR 2010, 2030, 2050, 2070, 2090, 2110 I feel lucky d
Use all scenarios� 2010, 2030, 2050, 2070, 2090, 2110 Combined

� Variation in projections of tidal marsh bird abundance among future scenarios within each time period was used to down-
weight pixels in the ‘‘Combined’’ strategy.
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Projected future distributions and abundance
Projections for future estuary-wide tidal marsh

bird populations were highly variable among the
future scenarios we used, particularly towards
2110 (Fig. 2). Furthermore, responses to the
scenarios we evaluated differed among the five
species we modeled (Fig. 2). For example,
estuary-wide abundances of Black Rail were
projected to increase by 146% for the high
sediment/low SLR scenario at 2110 but decrease
by 84% for the low sediment/high SLR scenario
(Fig. 2A). Additionally, we projected Black Rail
and Song Sparrow to increase in abundance for
the low sediment/low seal level rise scenario (Fig.
2A, E) while we projected Common Yellowthroat
and Marsh Wren to remain relatively unchanged
for the same scenario (Fig. 2C, D). Without the
implementation of restoration projects, we pro-
jected that all species would experience abun-
dance declines from 2010 for the low sediment/
high SLR scenario (Fig. 2) except for Black Rail at
2030 and 2050 and Common Yellowthroat at
2030 (Fig. 2A, C).

The direction of abundance change varied
among the five species (Fig. 2). For Common
Yellowthroat (Fig. 2C) and Marsh Wren (Fig. 2D),
we projected differences in abundances to be
greater between the SLR scenarios than between
the sediment scenarios. In the earlier years,
Clapper Rail (Fig. 2B) and Song Sparrow (Fig.
2E) changes in abundance were closely tied to
the sediment scenarios but projected responses to
the scenarios diverged inconsistently in later
years. Spatial projections of the abundances of

Song Sparrow across the Estuary illustrate that
although projections are highly variable among
scenarios (Fig. 3A, B), relatively high abundance
was projected in some locations for both of the
most extreme scenarios (Fig. 3).

Landscape prioritization
The Zonation solutions based on the six

selection strategies resulted in widely differing
landscape rankings in space (Fig. 4) and large
variation in the top restoration projects selected
by each strategy. In addition, there were large
differences in the abundance of tidal marsh birds
supported by the restoration projects selected
under the different restoration selection strate-
gies (Fig. 5). The ‘‘Head in the sand’’ strategy
consistently resulted in fewer birds than the other
strategies (Fig. 5). There were significantly fewer
birds added in the ‘‘Head in the sand’’ strategy
than the ‘‘Combined’’ strategy (Table 4). The
parameter estimates in our linear mixed model
indicated that the low sediment/low SLR scenar-
io strategy resulted in significantly fewer birds
supported than the ‘‘Combined’’ scenario, that is,
no overlap with zero (Table 4). For all other ‘‘I
feel lucky’’ strategies, the 95% credible interval of
the posterior distribution of the difference in
parameter estimates overlapped with zero (Table
4), but the overlap was small in all three cases
(Fig. 6) and modes were always negative,
suggesting higher bird gains when using the
‘‘Combined’’ strategy. We found significant dif-
ferences in the abundance of birds added
depending on which future scenario was used

Table 3. Estimates of predictive accuracy from species distribution (mean 6 SE) and abundance models for five

species of tidal marsh birds within the San Francisco Estuary; Black Rail (BLRA), Clapper Rail (CLRA),

Common Yellowthroat (COYE), Marsh Wren (MAWR) and Song Sparrow (SOSP). COR is the Pearson

correlation coefficient between the observed and predicted abundance from the models. The Relative influence

columns indicate the top three most influential covariates in the abundance models for each species,þ indicates

a positive correlation between abundance and increasing values of the covariate, - indicates a negative

correlation between abundance and increasing values of the coavariate, I indicates a unimodal optimal range of

the covariate within which bird abundance is projected to be highest.

Species

Prediction accuracy Relative influence of covariates

AUC COR Highest influence Second highest influence Third highest influence

BLRA 0.64 6 0.10 0.18 6 0.02 Year Dist. to bay (þ) Dist. channel (þ)
CLRA 0.73 6 0.01 0.50 6 0.05 Tidal range (�) Year Mean elev. (�)
COYE 0.93 6 0.01 0.77 6 0.01 Summer salinity (�) Tidal range (�) Dist. bay (þ)
MAWR 0.94 6 0.01 0.87 6 0.01 Summer salinity (�) Tidal range (I) Year
SOSP 0.84 6 0.02 0.73 6 0.01 Spring salinity (I) Year Tidal range (I)
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Fig. 2. The projected percent change from predicted 2010 abundance of Black Rail (A), Clapper Rail (B),

Common Yellowthroat (C), Marsh Wren (D) and Song Sparrow (E) for each combination of the sediment/sea-

level rise scenarios. For all species except Clapper Rail, year 2010 predictions are an average of predictions for

years 2000–2009, for Clapper Rail the predictions are an average for years 2005–2010. Future projections are made

for each 20 year period between 2030–2110.
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Fig. 3. Projected density (birds/ha) of Song Sparrow at 2110 for a high sediment low sea-level rise scenario (A)

and a low sediment high sea-level rise scenario (B). The standard deviation of Song Sparrow density across the

four scenarios at 2110 is also shown to illustrate uncertainty in future projections (C). For illustrative purposes,

the figure is zoomed into the San Pablo Bay region. Areas currently protected by levees are partially visible to

indicate restoration potential.
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Fig. 4. Maps of Zonation landscape conservation prioritization based on projections of abundance of five tidal

marsh bird species for current (2010) environmental conditions (‘‘Head in the sand’’) (A), current and a future

scenario of high sediment/low sea-level rise (‘‘I feel lucky b’’) (B), current and a future scenario of low sediment/

high sea-level rise (‘‘I feel lucky c’’) (C), and the ‘‘Combined’’ selection strategy which includes the four future

scenarios and current conditions (D). In all maps higher pixel values indicate greater habitat importance for tidal

marsh birds. For illustrative purpose, the figure is zoomed into the southern portion of San Francisco Bay.
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to evaluate the selection strategy and we also
detected a significant negative linear trend with
respect to year (Table 4).

We found that the difference in tidal marsh
birds supported by restoration projects compar-
ing the ‘‘Combined’’ strategy and other strategies
was greatest in the future (Fig. 7) when the
variation in future conditions across scenarios
was greatest (Fig. 8). At 2030 and 2050 when the
variation in bird response across scenarios was
lowest (Fig. 8) restoration sites selected using

either sediment scenario with the high SLR
scenario resulted in as many or more birds than
the ‘‘Combined’’ strategy (Fig. 7). In contrast, by
2110 when variation in bird response across
scenarios was highest (Fig. 8), all ‘‘I feel lucky’’
prioritization strategies resulted in the selection
of restoration projects that supported between
10% and 30% less birds than the ‘‘Combined’’
strategy (Fig. 7). Thus the superiority of the
‘‘Combined’’ strategy was most clearly manifest
in the long-term (80 to 100 years in the future).

Fig. 5. The standardized gain in the number of tidal marsh birds in the San Francisco Estuary added by

including restoration projects selected with the selection strategy along the X axis. Each future scenario is

represented in individual panels and the performance of each restoration selection strategy was evaluated against

each ‘‘actual’’ future scenario. The predicted gain for each species was first standardized by subtracting the log

transformed mean gain for each species across time. We then plotted the mean standardized value across five

tidal marsh bird species and five time periods. Error bars around the mean represent 61 SE.
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DISCUSSION

Projecting the responses of species and ecosys-
tems to future climate will always involve
uncertainty. It is reasonable to assume that some
land managers and other decision makers may
choose to ignore future forecasts that have high
levels of uncertainty. We sought to find an
optimal prioritization of marshes based on their
capacity to retain ecosystem function under four
different future scenarios that together probably
bracket the full range of possibilities. Our
approach was to incorporate future projections
into the prioritization, so as to account for
possible future scenarios in the choices managers
must make. Our results demonstrate that simply
using current conditions as guidance can lead to
an inefficient use of resources and to reduced
biodiversity protection. This is because the future
distributions and characteristics of marshes are
projected to differ significantly from current
conditions. If indeed one of the future scenarios
we evaluated is realized, we show that prioritiz-
ing using any of the ‘‘I feel lucky’’ strategy would
still be better than prioritizing based on current
conditions alone.

We found that the high variation in ecosystem
response to various SLR and sediment concen-
tration scenarios translates into high variability
in the response of tidal marsh bird populations

(Fig. 2). Given the high variability in projections
of physical forcings, in particular global sea-level
rise (Vermeer and Rahmstorf 2009, Price et al.
2011), and our limited understanding of some
processes, such as sediment transport, scientists
may be unable to provide a probabilistic estimate
of which future scenarios are more likely. Thus,
decision makers may need to make choices based
on model projections that have high uncertainty
and could benefit from analyses that consider
multiple alternative scenarios.

Our results suggest that the requirements of
the five tidal marsh species we modeled reflect
different aspects of marsh ecosystem quality. The
different sediment supply and SLR scenarios
together with changes in salinity influence the
future distribution and composition of the marsh
plant community (Veloz et al. 2012), which in
turn strongly influences bird species distribution
and abundance. The choice of sediment scenario
was of greater importance during the first half of
the 21st century for Black Rail and Song Sparrow,
which are associated with marsh characteristics
typical of mature mid and high-marsh habitat
dominated by gumplant (Grindelia stricta) and
channel cover (Spautz et al. 2006). For the other
species the choice of sea-level rise scenario, which
also influences salinity levels, was consistently
more important. Species which were less sensi-
tive to the sediment scenarios and more sensitive

Table 4. Linear mixed effects model results comparing the log transformed abundance of tidal marsh birds added

with respect to the selection of high priority restoration sites using different selection strategies. The factors

included in the model included future scenarios (sediment concentration and sea-level rise, four levels),

restoration selection strategy (six levels) and a linear trend for year. Species (five levels) was included as a

random effect. Upper and lower 95% credible intervals were obtained for the model parameter estimates from

5000 Markov chain Monte Carlo simulations. Scenario parameter estimates refer to the comparison of three

scenarios with Sed High/SLR High. Selection Strategy parameter estimates refer to the comparison of the five

listed strategies with the Combined strategy.

Factor Estimate Lower Upper SE t

Intercept 13.537 9.553 17.212 2.059 6.574
Scenario

Sed High/SLR Low 0.794 0.652 0.946 0.073 10.866
Sed Low/SLR High �2.225 �2.373 �2.076 0.073 �30.460
Sed Low/SLR Low �0.191 �0.349 �0.049 0.073 �2.618

Selection strategy
Head in the sand �0.688 �0.881 �0.516 0.089 �7.695
I feel lucky a (Sed High/SLR High) �0.120 �0.293 0.082 0.089 �1.342
I feel lucky b (Sed High/SLR Low) �0.160 �0.338 0.012 0.089 �1.789
I feel lucky c (Sed Low/SLR High) �0.163 �0.346 0.014 0.089 �1.818
I feel lucky d (Sed Low/SLR Low) �0.180 �0.360 �0.001 0.089 �2.013

Year �0.003 �0.005 �0.001 0.001 �3.169
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to SLR scenarios are likely to be those species that
are most constrained by habitat characteristics
reflecting difference in salinity levels. Therefore,
sensitivity to salinity should be most pronounced
comparing the two SLR scenarios. The two
species that we found to be most sensitive to
salinity levels, Common Yellowthroat and Marsh
Wren, were the least sensitive to the different
sediment scenarios and occur at the highest
densities in Suisun Bay, which currently has
relatively low salinity levels compared to the rest
of the Estuary. Both species are associated with

taller vegetation that dominates low salinity
marshes such as Alkali Bulrush (Bolboschoenus
maritumus) (Spautz et al. 2006).

We found that projected differences in bird
abundance due to sea-level rise scenario tended
to increase through time, reflecting divergence in
assumptions regarding the rates of sea-level rise,
which are projected to be much greater in the
second half of the 21st century, particularly for
the high sea-level rise scenario. Our results
indicate that tidal marsh birds in the San
Francisco Estuary are especially vulnerable to

Fig. 6. Posterior distributions of parameter estimate from the linear mixed effects model assessing the gain in

the log number of tidal marsh birds added from restoration projects using six different selection strategies.

Results for five selection strategies were compared to the ‘‘Combined’’ selection strategy; distribution of

parameter estimates for the difference in log number of tidal marsh birds is shown with a vertical blue line at 0.

Negative estimates indicate fewer gains in bird numbers than the combined strategy.
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higher rates of sea-level rise, which can result in
the loss of habitat due to marsh drowning
(Stralberg et al. 2011), and other habitat changes
due to increases in salinity (Cloern et al. 2011).
For the Clapper Rail, which occurs primarily in
areas with higher salinity and is associated with
characteristics of low-marsh habitat such as
Pacific cordgrass (Spartina foliosa; Goals Project
2000, USFWS 2009), three of the four scenarios
project an increase in abundance and distribu-
tion. However, the models do not specifically
account for potential changes in reproductive
and survival rates that may occur with extensive
transition from mid- to low-marsh habitat due to
the loss of high-tide refugia from predators and
increases in nest flooding (Nur et al. 2012).

The high variation in our predictions of bird
abundance among scenarios exemplifies the
uncertainty that decision makers face when
planning for sea-level rise. In the face of this
uncertainty, decision makers are forced to prior-
itize the allocation of resources for restoration

Fig. 7. The percent difference in the number of tidal marsh birds added for selected restoration projects using

five different selection strategies (shown in different colors) in comparison to the number of birds added for

restoration projects selected using the ‘‘Combined’’ strategy plotted through time. Points indicate the mean across

the five tidal marsh species and the error bars indicate 61 SE. The black dashed line indicates no difference

between the number of birds added by restoration projects using the ‘‘Combined’’ strategy and the other

strategies.

Fig. 8. The standard deviation of the percent change

in the projected Estuary population of each tidal marsh

bird species modeled across the four future scenarios

for each future time period.
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projects and to make planning decisions now
that may not be optimal in the future. By
modeling a range of scenarios that bracket this
uncertainty, we were able to assess the sensitivity
of tidal marsh bird populations to changes in
habitat caused by the factors we adjusted in each
scenario. Although we are unable to determine
the likelihood of one scenario vs. another, our
models can be used by decision makers to assess
the factors that contribute to the vulnerability of
each species, so that appropriate management
action can be taken. For example, the sensitivity
to the sediment scenarios we found for several
species indicates that the active management of
sediment in tidal marsh ecosystems could pro-
mote the sustainability or restoration of tidal
marsh bird habitat. If active sediment manage-
ment is not an option, then our results indicate
that restoration projects will provide a greater
benefit to tidal marsh birds in regions of the
Estuary that naturally contain higher concentra-
tions of sediment and should be initiated as soon
as possible so that restored marshes will reach
higher elevations sooner and thus be more
resilient to increasing rates of SLR during the
second half of the century (Stralberg et al. 2011).

We argue that the uncertainty in the projec-
tions of future environmental conditions should
be explicitly incorporated into models that will
be used for informing management (Moilanen et
al. 2006). In our study, the variability among the
scenarios we tested increased through time in our
experiment. By discounting pixels with high
variability in our landscape prioritization exer-
cise, we forced the ‘‘Combined’’ solution to
conserve pixels that are consistently good across
scenarios, particularly towards the end of our
modeling time period when the differences
between sea-level rise scenarios are projected to
be the most extreme. Although modeling differ-
ent future scenarios can be difficult and compu-
tationally intensive for landscape level studies,
the added understanding of sensitivities to
alternative future conditions may be especially
valuable when uncertainty in future conditions is
high as is the case with global SLR projections.
However, our results also indicate that when
uncertainty in future conditions is relatively low,
the benefits of combining the results from
different scenarios are less pronounced or non-
existent compared with picking a single future

scenario (Fig. 6).
We should note that we did not attempt to

account for all sources of uncertainty in our
model projections nor did we attempt to explore
the full range of the variables that defined our
future scenarios. In our analysis the ‘‘Combined’’
scenario incorporates the variation in future
model projections from four different future
scenarios. However, a more comprehensive
uncertainty analysis could also incorporate un-
certainty in our estimates of the state of physical
variables used to model tidal marsh bird abun-
dance (e.g., elevation measurement uncertainty),
as well as uncertainty due to missing variables
that also constrain the distribution and abun-
dance of species. Additionally, the future scenar-
ios we tested represent bookend estimates of
sediment and SLR rates. It is possible that more
intermediate scenarios of these variables could be
used in a prioritization that is equal to or better
than the ‘‘Combined’’ strategy tested here. In any
case, the wide range in future estimates of tidal
marsh abundance that we found in our models
provides a strong illustration for how consider-
ing variation in projections from different sce-
narios can inform management decisions.

The use of conservation prioritization algo-
rithms to rank the landscape for conservation
importance offers an objective method to select
sites that offer the greatest benefits to the most
species (Moilanen 2007). Our application of
Zonation does rely upon statistical species
distribution models, which have been found to
be less accurate at predicting to novel environ-
mental conditions than predicting to the same
conditions where the model was calibrated
(Veloz et al. 2012). However, the future condi-
tions which were used as inputs into our
distribution models do not represent novel
conditions for the tidal marsh bird species we
studied. Species distribution models also rely
upon other assumptions that are frequently
violated (Wiens et al. 2009). For example, the
tolerances of species are assumed to be repre-
sented by their spatial distributions and these
tolerances are also assumed to remain un-
changed into the future. Both theory and
empirical studies suggest that species may not
fully exploit their fundamental niches because of
dispersal limitations or species interactions (So-
berón 2007), and that realized niches of species
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can shift through time (Veloz et al. 2012).
However, a Zonation landscape prioritization
based on species distribution models projected
across the last glacial/interglacial transition more
closely matched a landscape prioritization based
on current distributions than other recently
tested reserve-selection strategies (Williams et
al. 2013). We argue that our models can be used
to aid in decisions that are likely to be influenced
by the rate of SLR and sediment availability,
arguably the two most important factors deter-
mining the fate of the San Francisco Estuary
marshes.

Beyond being used to rank potential restora-
tion projects, our landscape prioritization maps
can be used to identify areas that have the
potential to substantially contribute to the habitat
availability of tidal marsh species given our
future sea-level rise scenarios. They may be used
to evaluate the conservation costs of proposed
developments that might permanently remove
critical future tidal marsh habitat from the
ecosystem, particularly in current upland areas
that could support future marsh migration and
that may be important to prioritize for protec-
tion, so as to not foreclose on future management
options.

Our study only incorporates the habitat needs
of tidal marsh songbirds and rails, ignoring other
tidal marsh species such the federally endan-
gered saltmarsh harvest mouse (Reithrodontomys
raviventris), fish, and invertebrates. While we
maintain that the five tidal marsh bird species
that we selected are good indicators of tidal
marsh ecosystem function due to their ecological
diversity, it remains to be seen whether the
species we modeled do a sufficient job of
incorporating the resource needs of other tidal
marsh taxa. Additionally, promoting habitat for
tidal marsh species could lead to the loss of
mudflat habitat which is important for shore-
birds and other taxa (Stralberg et al. 2009). Future
work should include projected responses of a
wider variety of taxa to ensure that needs of the
entire ecosystem are prioritized.
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SUPPLEMENTAL MATERIAL

APPENDIX A

Analysis of bird survey observations
An important aspect of the Clapper Rail

survey data was the large number of zeroes in
the dataset due to absence of the species at a site
or low probability of detection during a survey.
The Clapper Rail is absent from some areas in the
Estuary for reasons not captured by the set of
covariates in our models. We excluded any
marsh sites (multiple point count locations were
sampled at each distinct marsh site) where no
detections of Clapper Rail were ever recorded
throughout the span of the study. Thus we did
not make predictions for Suisun Bay. Filtered this
way, the dataset still included points where the
species was never detected, and numerous visits
to points where no bird was recorded. The
filtered dataset (Table A1) included 5,603 records
of visits to points that were collapsed into 1,811
point-year records by taking the maximum
number of detections at a point each year. We
considered the maximum number detected to be
a better index of true abundance than the mean
number, due to the difficulty in detecting this
secretive species (Liu et al. 2009). Current and
projected indices were corrected with an estimate
of probability of detection (see below).

Black Rails have not been found during our
surveys within the San Francisco Bay (although
they were present in San Pablo and Suisun Bays);

they have been reported absent as breeders in
San Francisco Bay (Evens and Nur 2002).
Therefore we developed models without includ-
ing the surveys in the San Francisco Bay and our
models for this species are summarized without
including projections for the San Francisco Bay.
However, we include extrapolations in our maps
to illustrate potentially suitable habitat for the
species.

The prevalence and rate of detection of the
other three tidal marsh species was adequate for
including all records from all sites surveyed,
regardless of the history of detections of the
species at the site. The summaries of numbers of
records and detections, number of points and
sites surveyed for each species are shown in
Table A1. As with Clapper Rail, data were
collapsed into maximum number of detections
per point per year and model outputs corrected
for probability of detection.

In order to predict true, absolute abundance
we needed to estimate the probability that a
species was present during a survey but was not
detected (Buckland et al. 1993, Royle et al. 2005,
Thomas et al. 2009). To do so we discriminated
between true zeroes (points where the species
was never detected because it was absent) and
apparent zeroes (points where the species was
present but was not detected). To correct for
apparent zeroes (i.e., to account for probability of
detection) we developed a detection correction

Table A1. Sampling effort, summary of: point-year records, point-year detections and point-year absences;

detection probability, and ratio of mean count to maximum count for surveys included in models.

Species
No.
sites

No.
points

No. point-year
records

Sum of point-year
detections/no. zeros

Detection
probability

Mean count/
max count

Black Rail 36 455 1,424 366/1,150 0.06 NA
Clapper Rail 85 536 1,811 1,260/1,183 0.38 NA
Common Yellowthroat 41 447 2,238 1,131/1,579 0.31 0.76
Marsh Wren 51 560 2,238 3,397/1,140 0.30 0.66
Song Sparrow 66 627 2,238 9,705/95 0.29 0.79
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factor. For Clapper Rail, we used the maximum
counts per three visits to a point each year to fit a
simple mixture model that includes a probability
of detection parameter and a single count
(Poisson) parameter (Zuur et al. 2009). The
estimated probability of detection is with respect
to three visits to a point, and all points in the
dataset share the same probability of detection
(i.e., it was not modeled to be marsh- or point-
specific). For Marsh Wren, Song Sparrow, Black
Rail and Common Yellowthroat, there were
enough detections in single visits to fit a mixture
model that estimated the probability of detection
for a single visit for these species (Royle et al.
2005). We used the inverse of detection proba-
bility as our correction factor. We did not
incorporate uncertainty around estimates of

probability of detection into our estimates of

total abundance, which could reduce the preci-

sion of our predictions but likely will not greatly

affect our analysis of changes in abundance

across scenarios. Finally, for the three songbird

species, we adjusted maximum detections per

visit to take into account over-counting because

of double counting of individuals, and counting

of transients. For Song Sparrow, Common

Yellowthroat, and Marsh Wren, we determined

the ratio of maximum counts per visit to mean

counts per visit, and corrected the maximum

count by the ratio of mean to maximum counts

per visit (Table 1). Detections of the two rail

species were rare, and so no adjustment was

necessary.
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APPENDIX B

Fig. B1. Map of locations where salinity data were collected and used in the spatial interpolation to create

summer salinity grids. The color ramp for sampling location indicates the salinity gradient within the Estuary

and is expressed in practical salinity units (PSU).
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APPENDIX C

Fig. C1. Map of the study sub-regions. Different colored polygons show values for the high and low sediment

assumptions used in the marsh accretion modeling. Sediment values assigned to each subregion were based on

observations where avaliable and on expert opinion where data was unavailable.
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